Disease-linked mutations in Munc18-1 deplete synaptic Doc2.

TitleDisease-linked mutations in Munc18-1 deplete synaptic Doc2.
Publication TypeJournal Article
Year of Publication2024
AuthorsGuiberson NGuy Lewis, Black LS, Haller JE, Brukner A, Abramov D, Ahmad S, Xie YXin, Sharma M, Burré J
Date Published2024 Jan 18

Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset, and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons, and heterologous cells, we find that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we find a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D, as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrate that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons, but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.

Alternate JournalBrain
PubMed ID38242640